Pular para o conteúdo principal

Servidos um Chá Cósmico? Nada calmante quanto os da Terra! Mas sim uma estrutura apelidada de "Teacup", uma tempestade galáctica em fúria.

MAIS NOTÍCIAS

Uma galáxia hospeda uma estrutura apelidada de "Teacup", uma tempestade galáctica em fúria.

A fonte da tempestade cósmica é um buraco negro supermassivo enterrado no centro da galáxia, oficialmente conhecido como SDSS 1430 + 1339. Como a matéria nas regiões centrais da galáxia é puxada em direção ao buraco negro, ela é energizada pela forte gravidade e campos magnéticos perto do buraco negro. O material infalível produz mais radiação do que todas as estrelas da galáxia hospedeira. Esse tipo de buraco negro em crescimento ativo é conhecido como quasar.


Localizada a cerca de 1,1 bilhão de anos-luz da Terra, a galáxia hospedeira do Teacup foi originalmente descoberta em imagens de luz visível por cientistas cidadãos em 2007 como parte do projeto Galaxy Zoo, usando dados do Sloan Digital Sky Survey. Desde então, astrônomos profissionais que usam telescópios baseados no espaço reuniram pistas sobre a história desta galáxia com o objetivo de prever quão tempestuoso ela será no futuro. Esta nova imagem composta contém dados de raios X do Chandra (azul), juntamente com uma visão óptica do Telescópio Espacial Hubble da NASA (vermelho e verde).

Comprimento de ondas: composto
A "alça" da Teacup é um anel de luz óptica e de raios X que envolve uma bolha gigante. Este recurso em forma de alça, localizado a cerca de 30.000 anos-luz do buraco negro supermassivo, provavelmente foi formado por uma ou mais erupções alimentadas pelo buraco negro. A emissão de rádio - mostrada em uma imagem composta separada com os dados ópticos - também descreve essa bolha e uma bolha do mesmo tamanho no outro lado do buraco negro.
Anteriormente, as observações do telescópio óptico mostravam que os átomos no cabo da xícara de chá estavam ionizados, isto é, essas partículas ficavam carregadas quando alguns de seus elétrons eram 


removidos, presumivelmente pela forte radiação do quasar no passado. A quantidade de radiação necessária para ionizar os átomos foi comparada com a inferida a partir de observações ópticas do quasar. Essa comparação sugeriu que a produção de radiação do quasar havia diminuído por um fator entre 50 e 600 nos últimos 40.000 a 100.000 anos. Esse declínio agudo inferido levou os pesquisadores a concluir que o quasar no Teacup estava desaparecendo ou morrendo.

Comprimento de ondas: raio x
Novos dados da missão XMM-Newton da Chandra e da ESA dão aos astrónomos uma melhor compreensão da história desta tempestade galáctica. Os espectros de raios X (isto é, a quantidade de raios X ao longo de uma gama de energias) mostram que o quasar é fortemente obscurecido pelo gás. Isso implica que o quasar está produzindo muito mais radiação ionizante do que o indicado pelas estimativas baseadas apenas nos dados óticos, e que os rumores sobre a morte do quasar podem ter sido exagerados. Em vez disso, o quasar diminuiu apenas um fator de 25 ou menos nos últimos 100.000 anos.



Os dados do Chandra também mostram evidências de gás mais quente dentro da bolha, o que pode implicar que um vento de material está soprando para longe do buraco negro. Tal vento, que foi impulsionado pela radiação do quasar, pode ter criado as bolhas encontradas na xícara de chá.

Comprimento de ondas: óptico
Os astrônomos já observaram bolhas de vários tamanhos em galáxias elípticas, grupos de galáxias e aglomerados de galáxias que foram gerados por jatos estreitos contendo partículas viajando perto da velocidade da luz, que se afastam dos buracos negros supermassivos. A energia dos jatos domina a potência desses buracos negros, ao invés da radiação. Nestes sistemas a jato, os astrônomos descobriram que a energia necessária para gerar as bolhas é proporcional ao seu brilho de raios-X. Surpreendentemente, o quasar de Teacup controlado por radiação segue esse padrão. Isto sugere sistemas quasares dominados pela radiação e os seus primos dominados por jato podem ter efeitos semelhantes nos seus arredores galácticos.




Fonte: Chandra

Postagens mais visitadas deste blog

O maior vulcão ativo da Terra, Mauna Loa no Havaí, aumentou a sua sismicidade e a deformação no solo.

MAIS NOTÍCIAS A atividade no vulcão havaiano Mauna Loa subiu para níveis comparáveis ​​a um período mais alto de atividade entre 2014 e 2017, disseram os cientistas do HVO. A última erupção no vulcão ocorreu em 1984. 1984 - usgs.gov Esses sinais de maior atividade incluem o aumento de terremotos e deformação do solo ao redor do cume do vulcão, disse a cientista encarregada do HVO, Tina Neal, conforme relatado pelo Havaiano Tribune-Herald. O vulcão sofreu até 90 terremotos por semana desde agosto, embora a maioria dos terremotos tenha sido leve, medindo 2,0 ou menos na escala Richter, disse ela, acrescentando que os terremotos em Mauna Loa caíram para menos de cinco por semana no início de 2018 . As taxas de deformação parecem semelhantes a como estavam no período mais ativo do vulcão a partir de 2014, mas não são tão altas quanto a maior deformação durante esse período, quando algumas partes do vulcão mediram aprox

NASA registra pulsar 'Bala de Canhão' acelerando pelo espaço a 2.5 milhões de milhas por hora.

MAIS NOTÍCIAS Os astrônomos encontraram um pulsar no espaço a quase 2.5 milhões de milhas por hora - tão rápido que poderia percorrer a distância entre a Terra e a Lua em apenas 6 minutos. A descoberta foi feita usando o Telescópio Espacial de Raios-Gama Fermi da NASA e o Very Large Array (VLA) da Fundação Nacional de Ciência (National Science Foundation). O remanescente da supernova CTB 1 assemelha-se a uma bolha fantasmagórica. Nesta imagem, que combina novas observações de 1,5 gigahertz do radiotelescópio Very Large Array (VLA) (laranja, próximo ao centro) com observações mais antigas do Canadian Galactic Plane Observatory da Radio Dominion Radio Astrophysical Observatory (1,42 gigahertz, magenta e amarelo, 408 megahertz, verde) e dados infravermelhos (azul).  Os dados do VLA revelam claramente a trilha reta e brilhante do pulsar J0002 + 6216 e a borda curva da casca do remanescente. CTB 1 é de cerca de meio grau, o ta

Raios Anticrepusculares, você sabe o que são?

MAIS NOTÍCIAS Raios anticrepusculares são semelhantes aos raios crepusculares, mas visto do lado oposto ao sol no céu. São visíveis perto do nascer ou pôr do sol.  Os raios anticrepusculares são quase paralelos, mas parecem convergir ao ponto antissolar por causa da perspectiva linear. Os raios crepusculares são geralmente muito mais brilhantes do que os raios anticrepuscular. Isto porque para raios crepusculares, vistos no mesmo lado do céu que o sol, a luz de dispersão atmosférica que torna-os visíveis está ocorrendo em ângulos pequenos. Embora os raios anticrepusculares pareçam convergir para um ponto em frente ao sol, a convergência é, na verdade, uma ilusão. Os raios são de fato quase paralelos, mas a aparente convergência é o ponto de fuga para o infinito.  Fique ligado! Acompanhe nosso SITE ! Monitore as tempestades  AQUI Monitore o Sol   AQUI