Pular para o conteúdo principal

Construa um detector de raios cósmicos e veja as trilhas deixadas pelas partículas do espaço sideral!



Raios cósmicos são partículas subatômicas de alta energia que constantemente bombardeiam a Terra do espaço sideral. Milhares dessas partículas passam pelo nosso planeta e, através de nós, a cada segundo. Essa radiação natural é inofensiva e invisível, mas os rastros que as partículas deixam para trás podem ser vistos usando uma câmara de nuvens.


Ao longo dos anos, vários experimentos no CERN usaram câmaras de nuvens para detectar partículas. O experimento de Gargamelle, por exemplo - projetado para detectar neutrinos - tinha 4,8 metros de comprimento, 2 metros de diâmetro e pesava 1000 toneladas. O grande experimento da CLOUD no CERN hoje também usa uma câmara de nuvens, para investigar os efeitos dos raios cósmicos na formação de nuvens.


Embora as câmaras de nuvens no CERN levem muitos anos para planejar e construir, você pode criar seu próprio detector de raios cósmicos na sala de aula, desde que tenha acesso aos materiais certos. No entanto, certifique-se de que seu professor ou responsável esteja lá para ajudá-lo - você precisará ter cuidado ao manusear gelo seco e isopropanol, o que pode ser perigoso.


No vídeo acima, Sarah Charley, comunicadora do US / LHC, nos mostra como fazer uma “Câmara de Nuvem de Difusão Continuamente Sensível”. Originalmente desenvolvido na UC Berkeley em 1938, este tipo de câmara de nuvem usa álcool evaporado para criar uma “nuvem” extremamente sensível à passagem de partículas. Baseia-se nos mesmos princípios que determinam a formação de nuvens no céu. Se o ar estiver saturado com vapor de água e depois resfriado, minúsculas gotas de névoa se formarão ao redor de pedaços flutuantes de poeira ou outro material. Eles também formam prontamente em torno de íons; átomos eletricamente carregados ou grupos de átomos. Quando uma partícula carregada, como um próton, passa pela câmara, ela deixa para trás um rastro de íons ao atingir moléculas no ar ao longo de seu caminho e arrancar elétrons. Gotas de névoa se formam ao redor desses íons, criando uma trilha de nuvem.


Estudando a pista, ou uma fotografia dela, podemos determinar a energia e a carga elétrica da partícula que a produziu. Cada tipo de partícula possui uma trilha de nuvem característica, que varia em forma, comprimento e largura. Muitas partículas elementares foram descobertas através de sua trilha característica de nuvem.


Para instruções mais detalhadas e um tutorial completoveja aqui.

Fique ligado! Acompanhe nosso SITE!
Monitore as tempestades AQUI
Monitore o Sol AQUI
               

Postagens mais visitadas deste blog

O maior vulcão ativo da Terra, Mauna Loa no Havaí, aumentou a sua sismicidade e a deformação no solo.

MAIS NOTÍCIAS A atividade no vulcão havaiano Mauna Loa subiu para níveis comparáveis ​​a um período mais alto de atividade entre 2014 e 2017, disseram os cientistas do HVO. A última erupção no vulcão ocorreu em 1984. 1984 - usgs.gov Esses sinais de maior atividade incluem o aumento de terremotos e deformação do solo ao redor do cume do vulcão, disse a cientista encarregada do HVO, Tina Neal, conforme relatado pelo Havaiano Tribune-Herald. O vulcão sofreu até 90 terremotos por semana desde agosto, embora a maioria dos terremotos tenha sido leve, medindo 2,0 ou menos na escala Richter, disse ela, acrescentando que os terremotos em Mauna Loa caíram para menos de cinco por semana no início de 2018 . As taxas de deformação parecem semelhantes a como estavam no período mais ativo do vulcão a partir de 2014, mas não são tão altas quanto a maior deformação durante esse período, quando algumas partes do vulcão mediram a...

RÚSSIA CHEGOU EM VÊNUS NOS ANOS 60 COM A MISSÃO VENERA

Venera 1, a primeira sonda na série de missões soviéticas para Vênus, pesava impressionantes 1.400 libras (com apenas 184 libras, o primeiro satélite, Sputnik 1, era um mero peso pena em comparação) Parecendo um pouco com um Dalek de Doctor Who, a sonda Venera 1 foi estabilizada por rotação e embalada com instrumentos, incluindo um magnetômetro, contadores Geiger e detectores de micrometeorito.  E como muitos de seus sucessores, o interior da sonda foi pressurizado para pouco mais de uma atmosfera com gás nitrogênio para ajudar os instrumentos a funcionar em uma temperatura estável. No entanto, a primeira sonda Venera 1 nunca saiu da órbita da Terra. E a segunda tentativa, lançada em 12 de fevereiro de 1961, falhou na rota para Vênus, embora tenha passado a cerca de 62.000 milhas (100.000 quilômetros) do planeta.  O Venera 2, que se parece...

Um segundo planeta parece orbitar a Proxima Centauri.

A estrela mais próxima do sol parece hospedar outro mundo muito mais frio que a Terra. Sabe-se que Proxima Centauri, uma fraca estrela vermelha, a apenas 4,2 anos-luz de distância da Terra, já hospeda um planeta potencialmente habitável , o Proxima B, que é um pouco mais massivo que a Terra ( SN: 24/8/16 ). Agora, os astrônomos veem indícios de um segundo planeta, este muito maior e mais distante da estrela. A estrela Proxima Centauri (ilustrada) pode hospedar dois planetas - um confirmado, mundo possivelmente habitável (à esquerda), e outro planeta potencial recém-descoberto (à direita), mais massivo que a Terra. Ilustração: LORENZO SANTINELLI Se existe, o Proxima C parece ter pelo menos 5,8 vezes a massa da Terra e orbita sua estrela uma vez a cada cinco anos terrestres, relataram pesquisadores em 15 de janeiro na Science Advances .  Dada a sua distância de Proxima Centauri, o planeta também é muito frio para ter água líquida, um teste fundamen...